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ABSTRACT
Minimizing the scatter between cluster mass and accessibleobservables is an important goal for cluster cos-
mology. In this work, we introduce a new matched filter richness estimator, and test its performance using
the maxBCG cluster catalog. Our new estimator significantlyreduces the variance in theLX −richness rela-
tion, fromσ2

ln LX
= (0.86±0.02)2 to σ2

ln LX
= (0.69±0.02)2. Relative to the maxBCG richness estimate, it also

removes the strong redshift dependence of the richness scaling relations, and is significantly more robust to
photometric and redshift errors. These improvements are largely due to our more sophisticated treatment of
galaxy color data. We also demonstrate the scatter in theLX −richness relation depends on the aperture used
to estimate cluster richness, and introduce a novel approach for optimizing said aperture which can be easily
generalized to other mass tracers.
Subject headings: galaxies: clusters – X-rays: galaxies: clusters

1. INTRODUCTION

The dependence of the halo mass function on cosmology
is a problem that is well understood both analytically (Press
& Schechter 1974; Bond et al. 1991; Sheth & Tormen 2002)
and numerically (Jenkins et al. 2001; Warren et al. 2006; Tin-
ker et al. 2008). In principle, this detailed understandingal-
lows one to place tight constraints on the amplitude of the pri-
mordial power spectrum and on dark energy parameters (e.g.
Holder et al. 2001; Haiman et al. 2001). In practice, life is not
so simple. Cluster mass is not an observable, and so we must
rely on other quantities that trace mass to estimate the halo
mass function. In this context, observables that are tightly
correlated with mass and whose scatter is well understood are
highly desirable, as they permit a more accurate measurement
of the mass function.

One such mass tracer, and the subject of interest for this
work, is the so called cluster richness, a measure of the galaxy
content of a cluster. Relative to other popular mass tracers
such as X-ray properties, SZ-decrements, and galaxy velocity
dispersion, optical richness has unique advantages and disad-
vantages. Its unique advantages are:
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1. cluster richness can be easily estimated with inexpen-
sive, photometric optical data.

2. cluster richness can be estimated for both massive clus-
ters and low mass groups.

The first of these two properties is significant because it im-
plies that cluster richness estimates are readily available given
any large, photometric optical survey such as the SDSS (York
et al. 2000a) , DES13, or LSST14. The latter property, on the
other hand, is an important advantage for a much more inter-
esting reason.

Beginning with White et al. (1993), cosmological con-
straints from galaxy clusters have been presented as a degen-
eracy relationσ8Ω

γ
m = constant whereγ ≈ 0.5,σ8 is a param-

eter specifying the amplitude of the primordial power spec-
trum, andΩm is the matter density of the universe in units of
the critical density. The existence of this degeneracy is easy
to explain (Rozo et al. 2004): suppose that we only measured
the abundance of galaxy clusters at a single mass scale. Since
the halo mass function depends on bothσ8 andΩm, it is evi-
dent that with just one observable there must be a degeneracy
between these two parameters. But what if we measure the
halo mass function over a range of scales? This is roughly
equivalent to measuring the amplitude and slope of the halo
mass function at the statistical pivot point. If the mass range
probed is small, then the slope of the mass function is not well
constrained, and the degeneracy betweenσ8 andΩm will re-
main. In order to break this degeneracy, a measurement of the
halo mass function over a large range of masses is necessary.
Currently, only spectroscopic velocity measurements and op-
tical richness estimates can probe a mass range wide enough
to successfully break this degeneracy, but the former requires
considerably more observing resources.

There are, however, important disadvantages to using clus-
ter richness as a mass tracer. For instance, historically, the
fact that the relation between cluster richness and mass can-
not be predicted a priori based on simple physical arguments
was viewed as a significant drawback. Nowadays, however,

13 http://www.darkenergysurvey.org/
14 http://www.lsst.org/lsst_home.shtml
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this argument holds little sway, since the level of accuracyre-
quired for precision comsology in our a priori knowledge of
cluster scaling relations is pushing current research towards a
self-calibrating approach, in which both cosmology and clus-
ter scaling relations are simultaneously constrained fromthe
data (Lima & Hu 2004; Majumdar & Mohr 2004; Lima & Hu
2005; Hu & Cohn 2006; Wu et al. 2008). Thus, in so far as
self-calibration is necessary to insure one-self against possible
biases in cosmological estimates, the lack of a simple physi-
cal model for predicting cluster richness is no longer a serious
drawback.

Another reason why optical richness estimates fell out of
favor relative to other mass tracers is that, in the past, rich-
ness estimates were known to suffer from significant projec-
tion effects, which resulted in impure cluster samples as well
as large scatter in the mass-richness relation. Abell made one
of the first systematic attempts at measuring richness (Abell
1958; Abell et al. 1989) in defining his richness classes. He
tried to minimize projection by only counting galaxies dim-
mer thanm3, the magnitude of the third brightest cluster
galaxy, but brighter thanm3 + 2. The bright cut is aimed at
foreground interlopers, while the dim cut reduces the contri-
bution of the galaxy background. Later methods used simi-
lar counting techniques but included a proper account of the
background (e.g. Bahcall 1981) . Since then, more sophisti-
cated algorithms have been developed and applied to CCD-
based imaging (e.g. matched-filter methods Postman et al.
1996; Bramel et al. 2000; Yee & López-Cruz 1999; Kochanek
et al. 2003; Dong et al. 2008).

Projection effects are now a much more benign problem
thanks to these more sophisticated richness measurement
techniques, the advent of accurate photometric data enabled
by modern CCDs, and most recently, the well-known obser-
vations that ellipticals and cluster E/S0 galaxies in particular
tend to form a tight ridgeline in color-magnitude space (Vis-
vanathan & Sandage 1977; Bower et al. 1992; Gladders & Yee
2000; Koester et al. 2007b). This color clustering has been
integral to richness measurements in the SDSS (Goto et al.
2002; Miller et al. 2005; Koester et al. 2007b) and the Red
Sequence Cluster Survey (RCS: Gladders & Yee 2005), and
such color-based measures have been shown to be effective
mass tracers (Yee & Ellingson 2003; Muzzin et al. 2007; Shel-
don et al. 2007a; Johnston et al. 2007; Rykoff et al. 2008b;
Becker et al. 2007a).

While richness estimates show a strong correlation with
other mass proxies (e.g. Yee & Ellingson 2003; Dai et al.
2007; Sheldon et al. 2007a; Johnston et al. 2007; Becker et al.
2007a; Rykoff et al. 2008a), considerable scatter in the mass–
richness relation still remains. For instance, the richness mea-
sure used in the RCS cluster catalog has a logarithmic scatter
of σln M ≈ 0.8 (Gladders et al. 2007), while for maxBCG clus-
ters the number is closer toσln M ≈0.5 (Rozo et al. 2008). This
is to be compared to the scatter for X-ray mass tracers, which
is expected to be as low as≈ 8% forYX based on simulations
(Kravtsov et al. 2006), or as high as≈ 25% for non-core ex-
tracted soft X-ray band luminosities (e.g. Stanek et al. 2006;
Vikhlinin et al. 2008a). Clearly, much improvement is needed
to bring the scatter of richness measures to the level of X-ray
mass tracers.

This work is aimed at reducing the variance in the richness-
mass relation. We do this by explicitly constructing a new
richness estimator that significantly reduces the scatter in
mass at fixed richness for maxBCG clusters. Relative toN200
of maxBCG, we introduce two significant differences. The

first of these involves using a matched filter algorithm to es-
timate cluster richness. Matched filters have been used in the
literature before (Postman et al. 1996; Kochanek et al. 2003).
Unlike those works, however, our matched filter includes a
color component, which is of critical importance for reduc-
ing projection effects over the redshift range spanned by our
cluster sample.15 In that sense, our filter is closer in spirit to
that of Dong et al. (2008), who include a photometric red-
shift filter into their richness estimate. We also note here that
group-scale studies suggest that some measure of the average
color in the cluster is indicative of mass, particularly below
∼ 1014M⊙ (Martínez et al. 2002; Martínez & Muriel 2006;
Weinmann et al. 2006; Hansen et al. 2007) .

The second difference we introduce is the way in which
the aperture used to estimate cluster richness is determined.
Generically, cluster richness estimators involve counting the
number of galaxies within some specified aperture, which can
thus be interpreted as defining the “size” of the cluster. This
begs the question, then, of how is one to select the correct
size of a cluster a priori? Theoretically, halo sizes are usu-
ally defined in terms ofR∆, a radius which encompasses a
mean density that is∆ times either the mean or the criti-
cal density of the universe (conventions vary from author to
author). Unfortunately, not only is such a definition not ap-
plicable observationally, authors vary both on the reference
background density (critical versus mean mass density), and
on the specific overdensity value. Thus, even though signifi-
cant progress has been made (Cuesta et al. 2008), a definitive
definition of halo size remains elusive.

In this work, we approach this question with observations
in mind. That is, rather than coming with a preconceived no-
tion of what the radius of a cluster is, we let the data tell us
what the optimal radii for our clusters is by demanding that
optical richness be as tightly correlated as possible with X-ray
luminosity. The idea is as follows: first, one posits a scaling
relation between cluster richness and cluster radius. Whenes-
timating cluster richness, one then demands that the richness-
radius scaling relation be satisfied. For instance, given a clus-
ter, one can simply make an initial guess for its richness. Us-
ing the richness-radius scaling relation, one can then draw
a circle of the appropriate radius, and count the number of
galaxies within it. If the richness was underestimated, one
will find too many galaxies, signaling that the richness es-
timate must be increased. Proceeding in this way, one can
quickly zero in on the appropriate richness for the object.

This does, however, leave open the question of what the
correct richness-radius relation is. Since we are interested in
finding a new richness estimator that is tightly correlated with
halo mass, we can use the scatter in the mass–richness rela-
tion as our figure of merit to determine the “correct” richness-
radius relation. In practice, we use theLX −richness scatter
rather than the mass–richness scatter because the scatter in
mass is not directly observable. We emphasize that since the
mass scatter at fixed X-ray luminosity (see e.g. Vikhlinin etal.
2008b) is considerably tighter than the corresponding scatter
at fixed richness (Rozo et al. 2008), the use of X-ray luminos-
ity as a mass tracer for our purposes is well justified.

The layout of the paper is as follows. We describe the data
sets used in this work in § 2. Our matched filter estimator is
introduced in § 3, followed by our method for determining the

15 In Kochanek et al. (2003), the low redshift of the clusters make single
band magnitudes better proxies for distance than colors, sothe lack of a color
filter in the richness estimator is less important for their work.
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optimal radius-richness relation in § 4. We present our results
in section § 5. In investigating the properties of our new rich-
ness measure, we have discovered that the redshift evolution
of the richness-mass relation of our new estimator is much
more mild than that measured forN200. These results and the
corresponding discussion are presented in § 6. We summarize
our results and present our conclusions in § 7. Throughout,
whenever needed a flatΛCDM cosmology withΩM = 0.3 and
h = 1.0 was assumed.

2. DATA

The data for the analysis presented in this work comes from
two large area surveys, the Sloan Digital Sky Survey (SDSS:
York et al. 2000b) and the ROSAT All-Sky Survey (RASS:
Voges et al. 1999). SDSS imaging data are used to select
clusters and to measure their matched filter richness; RASS
data provide 0.1-2.4 keV X-ray fluxes, which we convert into
estimates of the X-ray luminosity of the clusters.

2.1. SDSS

The imaging and spectroscopic surveys that comprise the
SDSS are currently in the sixth Data Release (Adelman-
McCarthy et al. 2008). This release includes nearly 8500
square degrees of drift-scan imaging in the the Northern
Galactic Cap, and another 7500 square degrees of spectro-
scopic observations of stars, galaxies, and quasars.

The camera design (Gunn et al. 2006) and drift-scan imag-
ing strategy of the SDSS enable acquisition of nearly simul-
taneous observations in theu,g,r, i,z filter system (Fukugita
et al. 1996). Calibration (Hogg et al. 2001; Smith et al. 2002;
Tucker et al. 2006), astrometric (Pier et al. 2003), and pho-
tometric (Lupton et al. 2001) pipelines reduce the data into
object catalogs containing a host of measured parameters for
each object.

The maxBCG cluster sample and the galaxy catalogs used
to remeasure cluster richness in this paper are derived from
the SDSS. The galaxy catalogs are drawn from an area ap-
proximately coincident with DR4 (Adelman-McCarthy et al.
2006). Galaxies are selected from SDSS object catalogs as
described in (Sheldon et al. 2007b). In this work we use
CMODEL_COUNTS as our total magnitudes, andMODEL_COUNTS
when computing colors. Bright stars, survey edges and re-
gions of poor seeing are masked as previously described
(Koester et al. 2007a; Sheldon et al. 2007b).

2.2. Cluster Sample

We obtain sky locations, redshift estimates, and initial rich-
ness values from the maxBCG cluster catalog. Details of
the selection algorithm and catalog properties are published
elsewhere (Koester et al. 2007a,b). In brief, maxBCG selec-
tion relies on the observation that the galaxy population of
rich clusters is dominated by luminous, red galaxies clustered
tightly in color (the E/S0 ridgeline). Since these galaxieshave
old, passively evolving stellar populations, theirg − r color
closely reflects their redshift. The brightest such red galaxy,
typically located at the peak of the galaxy density, defines the
cluster center.

The maxBCG catalog is approximately volume limited in
the redshift range 0.1 ≤ z ≤ 0.3, with very accurate photo-
metric redshifts (δz ∼ 0.01). Studies of the maxBCG algo-
rithm applied to mock SDSS catalogs indicate that the com-
pleteness and purity are very high, above 90% (Koester et al.
2007a; Rozo et al. 2007). The maxBCG catalog has been
used to investigate the scaling of galaxy velocity dispersion

with cluster richness (Becker et al. 2007b) and to derive con-
straints on the power spectrum normalization,σ8, from cluster
number counts (Rozo et al. 2007).

The primary richness estimator used in the maxBCG cata-
log isN200, defined as the number of galaxies withg − r colors
within 2σ of the E/S0 ridgeline as defined by the BCG color,
brighter than 0.4L∗ (in i-band), and found withinrgal

200 of the
cluster center.rgal

200 is a cluster radius that depends upon the
number of galaxies within a fixed aperture 1h−1 Mpc of the
BCG, labeledNgals, with the relationrgal

200(Ngals) being cali-
brated so that, on average, the galaxy overdensity withinrgal

200
is 200Ω−1

m assumingΩm = 0.3 (Hansen et al. 2005). The full
catalog comprises 13,823 objects with a richness threshold
N200 ≥ 10, corresponding toM & 5 · 1013 h−1 M⊙ (Johnston
et al. 2007).

As mentioned in the introduction, we re-estimate the cluster
richness for every object in the maxBCG catalog, and measure
the corresponding scatter in theLX −richness relation. When
doing so, we always limit ourself to the 2000 richest clusters,
ranked according to the new richness estimate. This cut is
made to ensure that our results are insensitive to theN200≥ 10
cut of the maxBCG catalog. That is, the number of clusters
with N200≥ 10 that fall within the 2000 richest clusters for any
of the new richness measures considered has no impact on the
recovered scatter. We also note that our choice of always se-
lecting the 2000 richest clusters also implies that the specific
cluster sample used to estimate the scatter in theLX −richness
relation varies somewhat as we vary the richness estimator.

2.3. X-ray Measurements

The scatter inLX at fixed richness is estimated using a
slight variant of the method presented in Rykoff et al. (2008b).
Briefly, we use the RASS photon maps to estimate the 0.5-
2.0 keV X-ray flux at the location of each cluster, which is
used to deriveLX [0.1-2.4 keV] using the cluster photomet-
ric redshift (the conversion factors are similar to those used
in Böhringer et al. 2004). We then perform a Bayesian lin-
ear least squares fit to lnLx as a function of lnN, whereN is
the richness parameter to be tested. The variance in lnLX is
included as a free parameter. The fit is done following the
algorithm presented in Kelly (2007), and correctly takes into
account upper limits forLX for those clusters with upper lim-
its on X-ray emission.

It is important to note here that the estimated X-ray lumi-
nosity of a cluster depends on the aperture used to measure
LX . Rykoff et al. (2008b) used a fixed 750h−1kpc aperture as
a compromise between needing a large aperture to avoid los-
ing X-ray photons due to the ROSAT PSF and cluster miscen-
tering, and the need for a small aperture in order to increase
the signal to noise of the cluster emission. Further work has
shown that the scatter inLX at fixedN200 is minimized when
using an aperture of 1h−1Mpc. The corresponding scatter for
the top 2000 maxBCG clusters isσln LX |N200 = 0.96±0.03.16

The nature of the present exercise has the benefit of as-
signing a cluster radiusRc, to each individual cluster, so it
is natural to measureLX in the same scale as the optical rich-

16 The attentive reader will note that the quoted scatter inLX at fixed rich-
ness is significantly larger than the scatter in mass at fixed richness quoted
in the introduction, which was closer to 0.5. Given a slope of≈ 1.6 in the
LX − M relation, a scatter of 0.96 in LX corresponds to≈ 0.96/1.6 ≈ 0.6
scatter in mass. The remaining 10% difference is because thescatter in Rozo
et al. (2008) uses the scatter of the 1000 richest clusters, which is smaller than
that of the 2000 richest clusters by 0.1.
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ness. Thus, in this work, we estimateLX using a variable
aperture which depends upon the cluster’s richness. Using a
fixed 1h−1Mpc aperture to estimateLX does not have a large
effect on our results, for reasons that will be discussed be-
low. Finally, we note that very small physical apertures are
impractical for the most distant clusters due to the large size
of the RASS PSF, which corresponds to a physical scale of
300h−1kpc (FWHM) atz = 0.23, the median redshift of the
maxBCG catalog. Therefore, we place a fixed minimum aper-
ture of 500h−1kpc for each cluster. We discuss the small ef-
fect of this aperture cutoff in § 4.

2.4. Cleaning the Sample

Our analysis depends on a combination of optical and X-ray
measurements of maxBCG clusters using SDSS and RASS
data. As discussed in detail in Rykoff et al. (2008b, see § 5.6),
there is clear evidence that cool core clusters increase thescat-
ter in X-ray cluster properties. High resolution X-ray imaging
of clusters allows the exclusion of cluster cores, reducingthe
scatter in observed X-ray properties (e.g. O’Hara et al. 2006;
Chen et al. 2007; Maughan 2007). Unfortunately, the broad
PSF of RASS means that it is impossible to exclude the cores
of clusters in this work. In order to asses how robust our re-
sults are to the presence or absence of cooling flow clusters
in the cluster sample, we have created a “clean” sample of
maxBCG clusters by removing all known cool core clusters
that might have boosted global X-ray luminosity and may sig-
nificantly bias our results. In addition, we have removed ap-
parently X-ray bright maxBCG clusters that were determined
via inspection to have their X-ray flux significantly contami-
nated by foreground objects such as stars, low redshift galaxy
clusters, and AGN.

There does not exist a complete, unbiased catalog of cool
core X-ray clusters. The presently described cleaning pro-
cedure is not intended to be complete, and is intended only
to give some sense of the robustness of our results to the
presence of cooling flow clusters. Following Rykoff et al.
(2008b), we have assembled all the known cool core clus-
ters from the literature. This includes: A750, A1835,
Z2701, Z3146, Z7160, RXC 2129.6+0005 (Bauer et al. 2005),
A1413 (Chen et al. 2007), A2244 (Peres et al. 1998), and
RXC J1504.1−0248 (Böhringer et al. 2005). From here on,
the maxBCG catalog presented in Koester et al. (2007b) is
referred to as the “full” cluster sample, and the subsample de-
scribed above is referred to as the “clean” cluster sample.

3. MATCHED FILTER RICHNESS ESTIMATORS

3.1. Derivation of the Matched Filter Richness Estimator

Let x be a vector characterizing the observable properties
of a galaxy (e.g. galaxy color and magnitude). We model
the projected galaxy distribution around clusters as a sum
S(x) = λu(x|λ) + b(x) whereλ is the number of cluster galax-
ies, u(x|λ) is the cluster’s galaxy density profile normalized
to unity, andb(x) is density of background (i.e. non-member)
galaxies. The probability that a galaxy found near a clusteris
actually a cluster member is given by

p(x) =
λu(x|λ)

λu(x|λ) + b(x)
. (1)

Consequently, the total number of cluster galaxiesλ must sat-
isfy the constraint equation

λ =
∑

p(x|λ) =
∑ λu(x|λ)

λu(x|λ) + b(x)
(2)

where the sum is over all galaxies in the cluster field. If the fil-
tersu(x|λ) andb(x) are known, then given an observed galaxy
distribution{x1, ...,xN} around a cluster we can define a rich-
ness estimator̂λ as the solution to equation 2. As it turns out,
one can also derive this expression using a maximum likeli-
hood approach. Interested readers are referred to appendixA
for details. From now on, the letterλ shall always refer to a
matched filter richness estimate obtained with equation 2.

3.2. Cluster Radii and Matched Filter Richness Estimates

Consider again Eqn. 2. As mentioned before, the sum used
in Eqn. 2 needs to extend over all galaxies. In practice, of
course, one needs to add over all galaxies within some cutoff
radiusRc. Operationally, this is equivalent to settingu = 0
for all galaxies with radiiR > Rc, so it is natural to interpret
the cutoff radiusRc as a cluster radius. In this light, it seems
obvious that considerable care must be taken to choose the
correct cluster radius when estimating richness, but how togo
about doing just that is a less straightforward question.

In this work, we propose that cluster radii be selected on
the basis of a model radius-richness relation. Specifically, we
assume that the size of a cluster of richnessλ scales as a power
law of λ,

Rc(λ) = R0(λ/100.0)α. (3)

Naively, we expectR0 ≈ 1 Mpc, as that is the characteristic
size of clusters, andα ≈ 1/3 assuming thatR ∝ M1/3 ∝ λ1/3.
We postpone the discussion of how we go about selectingR0
andα to section 4. For the time being, we shall simply assume
thatR0 andα are known. In that case, equation 2 becomes

λ =
∑

p(x|λ) =
∑

R<Rc(λ)

λu(x|λ)
λu(x|λ) + b(x)

. (4)

Note that we have explicitly included the cutoff radiusRc in
the sum above, and that this cutoff radius now depends onλ.
Moreover, one can see that in the above equation,the cluster
richness λ is the only unknown, so we can numerically solve
for λ. In other words, by positing a richness-radius relation
we are able to simultaneously estimate both a cluster radius
and the corresponding cluster richness.17

3.3. The Filters

In this work we consider three observable properties of
galaxies:R, the projected distance from a galaxy to the as-
signed cluster center,m, the galaxy magnitude, andc, the
galaxies’g − r color. We adopt a separable filter function

u(x) = [2πRΣ(R)]φ(m)G(c) (5)

whereΣ(R) is the two dimensional cluster galaxy density pro-
file, φ(m) is the cluster luminosity function (expressed in ap-
parent magnitudes), andG(c) is color distribution of cluster
galaxies. The prefactor 2πR in front of Σ(R) accounts for the
fact that givenΣ(R), the radial probability density distribu-
tion is given by 2πRΣ(R). Also, note the separability condi-
tion makes the implicit assumption that these three quantities
are fully independent of each other, which is not true in detail
(for a discussion of the galaxy population of maxBCG clusters
see Hansen et al. 2007). For instance, the tilt of the ridgeline

17 Note that since we are explicitly settingu = 0 for R > Rc, the fact thatu
must be normalized to unity necessarily introduces a dependence ofu on λ.
That is, changingλ will not only change the range of the sum in equation 4,
it will also change the value of the summands.
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implies that the mean color of a red sequence cluster galaxy
varies slightly as a function of magnitude. We postpone an
investigation of how including the correlation between these
various observables affects our conclusions to future work
(Koester et al, in preparation). We now describe each of our
three filters in detail. We note that defining said filters requires
us to specify parameters governing the shape of the filters (e.g.
Rs for the radial filter,α for the luminosity filter, etc.). A de-
tailed study on the dependence of our matched filter richness
estimates on the shape of our filters will be presented in future
work.

3.3.1. The Radial Filter

N-body simulations show that the matter distribution of
massive halos can be well described by the so called NFW
profile (see e.g. Navarro et al. 1995, 1997),

ρ(r) ∝ 1
(r/rs)(1+ r/rs)2

(6)

wherers is characteristic scale radius at which the logarithmic
slope of the density profile is equal to−2. The corresponding
two dimensional surface density profile (Bartelmann 1996) is

Σ(R) ∝ 1
(R/Rs)2 − 1

f (R/Rs) (7)

whereRs = rs and

f (x) = 1−
2√

x2 − 1
tan−1

√

x − 1
x + 1

. (8)

This formula assumesx > 1. Forx < 1, one uses the identity
tan−1(ix) = i tanh(x).

Here, we assume that the NFW profile can also reasonably
describe the density distribution of galaxies in clusters (Lin
& Mohr 2004; Hansen et al. 2005; Popesso et al. 2007), and
follow Koester et al. (2007a) in settingRs = 150h−1kpc. In
principle, one could optimize the value of this parameter, but
we do not expect our final results to be overly sensitive to
our chosen value (see e.g. Dong et al. 2008). Also, in order to
avoid the singularity atR = 0 in the above expression, we setΣ

to a constant forR ≤ Rcore = 100h−1kpc. This core density is
chosen so that the mass distributionΣ(R) is continuous. Our
results are insensitive to the particular choice of core radius
for Rcore ≤ 200h−1kpc. Finally, the profileΣ(R) is truncated
at the cluster radiusRc(λ), and is normalized such that

1 =
∫ Rc(λ)

0
dR 2πRΣ(R). (9)

We emphasize that this condition implies that the normaliza-
tion constant for the density profile is richness dependent,and
must be recomputed for eachλ value when solving forλ in
equation 4.

3.3.2. The Luminosity Filter

At z . 0.3, the luminosity distribution of satellite clus-
ter galaxies is well-represented by a Schechter function (e.g
Hansen et al. 2007) which we write as

φ(m) = 0.4ln(10)φ∗10−0.4(m−m∗)(α+1) exp
(

−10−0.4(m−m∗)
)

(10)

We takeα = 0.8 independent of redshift. The characteris-
tic magnitude,m∗, is corrected for the distance modulus, k-
corrected, and passively-evolved using stellar population syn-
thesis models described in Koester et al. (2007b). When ap-
plying the luminosity filter,m∗ is chosen from these models,

appropriate to the redshift of the cluster under consideration,
and the filter is normalized by integrating down to a magni-
tude corresponding to 0.4L∗ at the cluster redshift, or an abso-
lute magnitudeMi = −20.25. The latter is simply a luminosity
cut bright enough to make the maxBCG sample volume lim-
ited.

3.3.3. The Color Filter

Early type galaxies are known to dominate the inner re-
gions of low redshift galaxy clusters (see e.g. Dressler 1984;
Kormendy & Djorgovski 1989; Hansen et al. 2007). The
rest-frame spectra of these galaxies typically exhibit a signif-
icant drop at about 4000 Å, that gives early type galaxies at
the same redshift nearly uniformly red colors when observed
through filters that encompass this break. In the SDSS sur-
vey, the corresponding filters for galaxies atz . 0.35 areg
andr, and we find that theg − r colors of early type galaxies
are found to be gaussianly distributed with a small intrinsic
dispersion of about 0.05 magnitudes. Consequently, we take
the color filterG(c) to be

G(c|z) =
1√
2πσ

exp

[

(c − 〈c|z〉)2

2σ2

]

(11)

wherec = g − r is the color of interest,〈c|z〉 is the mean of
the Gaussian color distribution of early type galaxies at red-
shift z, andσ is the width of the distribution. The mean color
〈c|z〉 = 0.625+ 3.149z was determined by matching maxBCG
cluster members to the SDSS LRG (Eisenstein et al. 2001)
and MAIN (Strauss et al. 2002) spectroscopic galaxy samples.
The net dispersionσ is taken to be the sum in quadrature of
the intrinsic color dispersionσint , set toσint = 0.05, and the es-
timated photometric errorσm. In g−r, the typical photometric
error on the red-sequence cluster galaxies brighter than 0.4L∗

is σm ≈ 0.01 magnitudes forz = 0.1, but can be as as large as
σm ≈ 0.05 magnitudes forz = 0.3.

3.3.4. Background Estimation

To fully specify our filters, we also need to describe our
background model. We assume the background galaxy den-
sity is constant in space, so thatb(x) = 2πRΣ̄g(mi,c) where
Σ̄g(mi,c) is the galaxy density as a function of galaxyi−band
magnitude andg − r color. Σ̄g(mi,c) is estimated by distribut-
ing 106 random points throughout the same SDSS photomet-
ric survey footprint that defines our galaxy sample. All galax-
ies within an angular separation of 0.05 degrees of the ran-
dom points (about 1h−1Mpc at z = 0.25) are used to empir-
ically determine the mean galaxy densityΣ̄g(mi,c) using a
top hat cloud-in-cells (CIC) algorithm (e.g. Hockney & East-
wood 1981). For our cells, we used 60 evenly-spaced bins in
g − r ∈ [0,2] and 40 bins ini ∈ [14,20]. In each 2 dimensional
bin, the number density of galaxies is normalized by the total
number of random points, the width of each color and mag-
nitude bin (0.05 mags and 0.1 mags, respectively), and area
searched (0.052π degrees).

This process creates an estimate of the global background,
i.e. the number density of galaxies as a function of color and
magnitude in the full SDSS survey. Not surprisingly, a sim-
ilar result is obtained by binning the whole galaxy catalog
in color and magnitude with CIC and dividing by the survey
area. However, the procedure we employ above can readily
be adapted to returning alternative background estimates,e.g
the local cluster density as a function of redshift, by replacing
random points with clusters.
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4. METHODS

We have now fully specified our richness estimators, except
for the valuesR0 andα that govern the radius-richness scaling
relation. We now discuss how we go about selecting optimal
values for these parameters.

As we mentioned earlier, we wish to find the cluster rich-
ness estimator that minimizes the scatter in the richness-mass
relation. Cluster mass, however, is not an observable, and thus
we must rely on other mass tracers. Here, we use X-ray lumi-
nosity (LX ) as our mass proxy, primarily because it is a well
known mass tracer (e.g. Reiprich & Böhringer 2002; Stanek
et al. 2006; Rykoff et al. 2008a) that is readily accessible to us
and for which we can quickly estimate the scatter for multiple
richness measures (see Rykoff et al. 2008b).

We proceed as follows: we begin by defining a coarse grid
in R0 andα, given by

R0 ={0.5,0.75,1.0,1.25,1.5} (12)
α ={−0.05,0.05,0.15,0.25,0.35,0.45} (13)

whereR0 is measured in units ofh−1Mpc. Each of these grid
points defines a distinct richness estimator through equation
4. For each grid point, we estimate the corresponding richness
for every cluster in the maxBCG catalog. We then select the
2000 richest clusters and calculate the scatter inLX at fixed
richness of those top 2000 clusters. Note that, because the
rank ordering of the clusters changes as we vary our richness
estimate, the clusters used to estimate the scatter inLX varies
slightly across the grid. We limit ourselves to the richest 2000
clusters to ensure our results are insensitive to theN200 ≥ 10
cut in the maxBCG catalog.

From our measurements of the scatterσln LX |λ(R0,α) at each
grid point, we can directly read which parameter combination
minimizes the scatter. We emphasize that because the scat-
ter in mass at fixedLX is much lower than the corresponding
scatter at fixed richness (Rozo et al. 2008), for our purposes
LX is a nearly perfect mass tracer. We note that the X-ray
measurements described in 2.3 require a minimum aperture of
500h−1kpc. For the 2000 richest clusters, this cutoff is only
employed whenR0 = 0.5h−1Mpc andα ≥ 0.15, which is a re-
gion of parameter space that already does not appear to have
a strong correlation betweenLX and richness. Therefore, we
conclude that the aperture cutoff does not have a significant
effect on our results.

To determine the uncertainty in the recovered parametersR0
andα, we need to understand the errors in our measurement of
the Lx-richness scatter. We estimate these errors using boot-
strap resampling. We proceed as follows: letµ be an index
that runs over all grid points (R0,α), andσµ be the scatter at
the µth grid point. We resample (with replacement) the full
maxBCG catalog, and measure the scatterσµ at every grid
point. The procedure is iterated 100 times, and the measure-
ments are used to estimate the mean and covariance matrix
of σµ.18 Assuming that the probability distributionP(σµ) is
a multi-variate Gaussian characterized by the observed mean
and covariance matrix, we generate 105 Monte Carlo realiza-
tions of the scatter, and estimate the fraction of times thateach
grid point is observed to have the lowest scatter among all grid
points.

To use the grid to zero in on a particular value forR0 andα,
and to estimate errors in these values, we fit each of the 105

18 The measurement of the scatter inLX at fixed richness is very time
consuming, and needs to be done independently for every point in the grid.
This explains why we restrict ourselves to only 100 bootstrap resamplings.

realizations of the scatterσln LX |λ(R0,α) with a 2D parabola.
From the fits, we can read off the values ofR0 andα at which
the minimum occurs, giving us 105 samplings of the probabil-
ity distribution of the location of the minimum in parameter
space. The probability distribution of the resulting 105 min-
ima is exactly what we desired.

As it turns out, and as discussed in § 5, the coarse grid de-
fined above is too broad for a parabolic fit to adequately de-
scribe the functionσln LX |λ(R0,α). However, if we restrict our-
selves to a smaller region of parameter space near the mini-
mum determined from the coarse grid, a quadratic fit becomes
adequate. Therefore, we have defined a narrower fine grid,

R0 ={1.0,1.1,1.2,1.3,1.4} (14)
α ={0.22,0.26,0.30,0.34,0.38,0.42} (15)

with R0 measured in units ofh−1Mpc. It is this grid that we
use to report our final results and to select the optimal param-
etersR0 andα.

To summarize, we first do a rough exploration of the pa-
rameter spaceR0 andα using a coarse grid, and then use a
smaller but finer grid to statistically constrain the location of
the scatter minimum.

5. RESULTS

5.1. The Full Sample

Figure 1 illustrates the probability that each coarse grid
point is found to minimize the scatter of the 2000 richest
clusters when resampling our data as described in § 4. For
this plot, we have used the full cluster sample, though a sim-
ilar result holds when using the clean cluster sample. Each
square is shaded in gray on a log scale according to the frac-
tion of trials that point is found to have the minimum scat-
ter. The primary feature of this plot is a broad degeneracy
region from (R0,α) ≈ (0.8,0.0) to (R0,α) ≈ (1.4,0.5), cor-
responding to a scatterσln LX |λ ≈ 0.78. Note this scatter is
a significant improvement relative to theLX −richness scat-
ter measured forN200, σln LX |N200 = 0.96. The scatter inLX
increases as we move away from the degeneracy region, rang-
ing from σln LX |λ ∼ 0.86 in the lower-right corner of Figure 1
to σln LX |λ > 1.0 in the upper-left corner. Further discussion
of why our new richness estimator results in significantly re-
duced scatter is presented in § 6.

Figure 2 shows the probability density of the points in
R0 − α space that minimize the scatter inLX at fixed richness
for the fine grid, as estimated through the parabolic fits to the
function σln LX |λ(R0,α) described in section § 4. The solid
contours are for the full cluster sample and the dashed con-
tours are for the clean cluster sample. The diagonal degener-
acy suggested in the previous plot is now very obvious, espe-
cially in the 2σ contour. Importantly, both the full and clean
sample produce very similar results, although the contoursare
noticeably smoother for the clean sample. We note that the
closing of the 1σ contours in the upper-right and lower-left is
likely an artifact of the grid boundaries. As demonstrated in
the coarse grid in Figure 1, the degeneracy region extends at
least toα ∼ 0 andα ∼ 0.5.

The existence of the degeneracy region is relatively simple
to explain. Consider the problem we are trying to address:
what is the correct size of a cluster? Roughly speaking, this
involves two parts: one, determining the correct cluster size
of the average cluster, and two, determining how the cluster
size scales with richness as one moves away from the average
cluster. The former is much better determined than the lat-
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FIG. 1.— Probability that a given point in the grid minimizes thescatter in
LX at fixed richness in the coarse grid. The gray scale varies logarithmically
with the probability, which is explicitly quoted in the Figure. Note the broad
degeneracy region from (R0,α) ≈ (0.8,0.0) to (R0,α) ≈ (1.4,0.5), where the
scatterσln LX |λ ∼ 0.78.
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FIG. 2.— Contour plot of the probability density of the points inR0 − α
space that minimize the scatterσln LX |λ(R0,α). The solid contours show the
1σ and 2σ contours for the full sample, and the dashed lines show the same
contours for the “cleaned” sample (see § 2.4). The closing ofthe 1σ contours
in the upper-right and lower-left are likely an artifact of the grid. The dotted
line shows the contour of fixed mean cluster radiusRc = 900h−1 kpc. All the
richness estimators along this line result in the same mean cluster radius, and
have therefore very similar richness values.

ter, so in the (R0,α) plane, one typically expects a sharp con-
straint on the mean cluster radius, and a considerably weaker
constraint on the orthogonal direction, corresponding to the
scaling of the radius with richness around the statistical pivot
point. Thus, we expect the observed degeneracy betweenR0
andα to pick out parameter combinations that hold the me-
dian cluster radius of the sample fixed.

Figure 2 clearly illustrates that this is the case. In the figure,
the diagonal dotted line corresponds to a contour of fixed me-
dian cluster radius̃R(R0,α) = 900h−1kpc, where the function
R̃(R0,α) is defined as the median cluster radius of the 2000
richest clusters. The fact that this contour falls almost exactly
along the observed degeneracy betweenR0 and α strongly
supports our interpretation.

Our argument suggests a way to break the degeneracy be-
tweenR0 andα. If we can measure the scatter inLX at fixed
richness at two very different richness scales, then the mean
radius picked out by each of the samples will be substantially
different. This, in turn, rotates the degeneracy lines relative to

each other, so that the intersection defined by the two samples
would cleanly pick out a single value forR0 andα.

We have repeated our analysis on the top 500 and 1000 clus-
ters, but these thresholds are much too close to our reported
2000 clusters to be able to successfully break the observed de-
generacy. Ideally, we would repeat our study using the 10000
or 20000 richest clusters, thereby guaranteeing a degeneracy
region that is significantly rotated relative to that of Figure
2. Unfortunately, performing our scatter analysis on the top
10000 clusters is not presently possible since the vast majority
of this larger cluster sample does not emit sufficiently in X-
rays to allow for individual luminosity estimates of the clus-
ters. Furthermore, when choosing more than the top∼ 3000
clusters we begin to run into threshold effects due to the ini-
tial selection of maxBCG clusters withN200≥ 10. One might
hope instead to repeat our analysis using not the top 10000
clusters, but rather the top 100 clusters, that is, by limiting
ourselves to the very richest systems. Unfortunately, thissuf-
fers from a different problem: when looking at the top 100
clusters only, the range of richnesses being sampled is much
too narrow to allow a simultaneous estimate of the amplitude,
slope, and scatter of theLX -richness relation, so performing
our analysis using the top 100 clusters only is also not fea-
sible. Thus, at the time being, we must simply accept the
existence of a large degeneracy betweenR0 andα.

5.2. Selecting an Optimal α

Due to the large degeneracy betweenR0 andα, it is difficult
to select any single point inR0 −α space as optimal. We note,
however, that the degeneracy region goes throughα = 1/3,
which is loosely theoretically motivated based on the naive
expectationR3 ∝ M ∝ λ. Since our goal is to define a unique
richness measure, we have opted for settingα = 1/3. Given
that the degeneracy region goes throughα = 1/3, our choice
does not adversely affect the properties of our richness estima-
tor. That is, the scatter forα = 1/3 is indistinguishable from
that of the best possible value forα to within observational
uncertainties.

Using a principal component analysis on the best-fit min-
ima that describe the contours in Figure 2, we have calculated
the degeneracy axis for each of the full and clean cluster sam-
ples. For the full cluster sample we obtain

ln(R0/1 h−1 Mpc)− 1.342(α− 0.33) = 0.25±0.04, (16)

while for the clean cluster sample we find

ln(R0/1 h−1 Mpc)− 1.277(α− 0.33) = 0.24±0.03 (17)

We have confirmed that the residuals are Gaussian along most
of the degeneracy axis. We quote the degeneracy line in terms
of lnR0 andα rather thanR0 andα themselves simply because
the former results in more accurate extrapolations forα values
that are very different formα = 1/3.

We are encouraged by the fact that the clean and full sam-
ples give fully consistent results, thus showing that the known
cool core clusters and obvious foreground contamination are
not significantly biasing the best combination ofR0 and α.
Our final choice forR0 andα is thereforeR0 = 1.27 h−1 Mpc
andα = 1/3.

5.3. Improvement in the Scatter

Now that we have a fully specifiedR0 = 1.27 h−1Mpc and
α = 1/3, we have measured the matched filter richness of ev-
ery cluster in the Koester et al. (2007b) sample. Figure 3
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FIG. 3.— Top panel: LX vs. N200 for the 3000 richest clusters. Follow-
ing Rykoff et al. (2008b), the solid points represent> 1σ detections, and the
empty circles represent 1σ upper limits. The vertical dotted line represents
the cutoff for the top 2000 clusters used in the analysis. Thedashed lines
represent the±2σln L|N200

scatter constraints. The fictitious data point in the
lower-right corner shows the typicalLX error. The red diamonds represent
clusters that are excluded from the clean sample because they are obviously
contaminated by foreground X-ray emission. The blue squares represent clus-
ters that are excluded from the clean sample because they areknown cool
core clusters.Bottom panel: LX vs. λ for R0 = 1.27, α = 1/3 for the 3000
richest clusters; the symbols are the same as for the top panel. Our optimized
matched filter richness estimateλ is significantly more tightly correlated with
LX thanN200.

showsLX vs. N200 (top panel) andLX vs. λ (bottom panel) for
the top 3000 richest clusters. Following Rykoff et al. (2008b),
the solid points represent detections at the> 1σ level, and
the empty points represent 1σ upper limits. The vertical dot-
ted line represents the cutoff for the top 2000 richest clusters
used in this analysis. Though not obviously visible in this
plot, the scatter inλ is significantly decreased. We note that
there are still some significant outliers in theLX − λ relation,
especially at highLX . The red diamonds and blue squares rep-
resent clusters that are removed from the clean cluster sample.
The red diamonds are clusters whose measured X-ray flux is
known to be contaminated by foreground emission from stars,
nearby galaxy clusters, or AGN. The blue squares represent
the known cool core clusters. These are, for the most part,
significantly brighter than typical maxBCG clusters at similar
richness, which is consistent with the hypothesis that the X-
ray luminosity of these clusters is boosted by emission from
the core.

Table 1 summarizes how the scatter of the 2000 richest clus-
ters varies as we change our richness measure. Here, we con-

TABLE 1. SCATTER IN LX AT FIXED RICHNESS, TOP 2000CLUSTERS

Richness Full Sample Clean Sample

N200 0.95±0.03 0.86±0.02
N200L0.79

BCG 0.84±0.02 0.78±0.02
λ 0.79±0.02 0.70±0.02
λ 0.78±0.02 0.69±0.02

Except for the last row,LX was measured within a fixed 1h−1 Mpc aperture.
The scatter inLX quoted in the last row is different only in that it measuredLX

within the assigned optical cluster radiusRc(λ). The combinationN200L0.79
BCG

was suggested by Reyes et al. (2008) as an improvement overN200. The error
bars define 68% confidence intervals.

sider three richness measures only:N200, which is the original
richness estimate for maxBCG clusters presented in Koester
et al. (2007a);N200L0.79

BCG, which was suggested by Reyes et al.
(2008) as an improvement overN200 by making use ofLBCG,
the luminosity of the cluster BCG; and our optimized matched
filter richness estimatorλ. We see that for both the full and
clean sample, our optimized matched filter estimator signifi-
cantly outperforms bothN200 andN200L0.79

BCG. To quantify the
significance of the improvement, we must take into account
the fact that the errors are correlated. Following § 4, we have
performed bootstrap resampling on the full catalog and clean
catalog, calculating the scatter in the top 2000 clusters for
both λ and N200. For each bootstrap resampling we calcu-
late r = σln LX |λ/σln LX |N200. The deviation fromr = 1.0 can be
used to quantify the significance of the improvement. The im-
provement in the scatter relative toN200 is significant at 9σ for
the full cluster sample, and at 11σ for the clean sample.

6. REDSHIFT DEPENDENCE

Rykoff et al. (2008b) showed that there is strong redshift
evolution in the〈LX |N200〉 relation of maxBCG clusters. Simi-
lar redshift dependence is observed in the velocity dispersion-
optical richness relation measured in Becker et al. (2007a).
This is best understood as a variation ofN200 at fixed mass,
with an observed fractional decrease inN200 of 30%− 40%
over the redshift range of the maxBCG catalog. In our pre-
vious work, the origin of this redshift dependence was un-
clear. Here, we demonstrate how the matched-filter richness
removes this redshift dependence, and show the pitfalls of a
simple richness estimator such asN200.

Figure 4 shows the〈LX |N200〉 relation for maxBCG clusters
split into three different redshift bins (solid symbols). Also
shown is the mean relation〈LX |λ〉 for the same three red-
shift bins (empty symbols). It is obvious from the figure that
the redshift evolution in theLX −richness relation is signifi-
cantly weaker forλ than it is forN200. We have fit the data
with a power-law evolution in redshift, following Rykoff etal.
(2008b, §5.3):

〈LX |N〉 = A

(

N
40

)α (

1+ z
1+ z̃

)γ

(18)

wherez̃ is the median redshift of the cluster sample andN is
the richness measure of interest. We find thatγ = 6.0±0.8 for
N200 while γ = 0.7±0.8 for λ, consistent with no evolution.

Note, however, that even if the relation betweenλ and clus-
ter mass is redshift independent, we expect to see evolution
in theLX − λ relation due to evolution in theLX − M relation.
The expectation for self-similar evolution inLX at fixed mass
is thatLX ∝ ρc(z)7/6 for bolometric luminosities, but closer to
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FIG. 4.— 〈LX 〉 vs. richness in three different richness bins. The empty
points denote the matched filter richnessλ, and the solid points denote the
original maxBCG richnessN200. The three richness bins are: 0.10< z < 0.18
(blue circles); 0.18 < z < 0.26 (green squares); 0.26 < z < 0.30 (red dia-
monds). The normalization of〈LX 〉− N200 has been multiplied by 5 for clar-
ity. It is readily apparent thatN200 has a strong redshift dependence (Rykoff
et al. 2008b; Becker et al. 2007a), whileλ does not.

ρ̄1.0
c for soft-band X-ray luminosities (Kaiser 1986). Here,ρc

is the critical density of the universe at redshiftz. In aΛCDM
universe withΩm = 0.25, the expected soft X-ray band evolu-
tion is thusγ ≈ 1.05, so our results are also consistent with
self-similar evolution.

The striking difference in the evolution in theLX −richness
relation betweenλ andN200 is due to the differences in how
N200 andλ employ galaxy colors when estimating cluster rich-
ness. ForN200, a galaxy contributes to the richness if and
only if its color differs from the BCG color by no more than
twice the intrinsic width of the ridgeline color width plus
the galaxy’s photometric error, added in quadrature. That is,
N200 weighs galaxies according to the probability distribution
ptop−hat(c) given by:

ptop−hat(c) =

{

1 if |c − cBCG| ≤
√

(2σint)2 + σ2
obs

0 otherwise
(19)

whereσint = 0.05 is the intrinsic width of the ridgeline. This
is a top-hat distribution in observed color, but the width ofthe
top-hat depends on the photometric error of the galaxy under
consideration. Also, note that the center of the color box isnot
the model〈c|z〉 quoted earlier, but rather the color of the BCG,
which, as we show below, is a very significant difference.

To illustrate how these differences in the color filter re-
sults in differences in the evolution and scatter ofλ andN200,
we have defined three additional richness measures with key
properties bridging those ofλ andN200. Includingλ andN200,
the five richness measures considered here are

1. λ: the matched filter richness with a variable aperture,
as described above, with a gaussian color filter centered
on 〈c|z〉.

2. λBCG: the matched filter richness using the same aper-
ture as withλ, but with the Gaussian model centered on
cBCG.

3. Ntop−hat,model , a top-hat richness using theptop−hat for-
mulation above, centered around〈c|z〉 as in Eqn. 11,
measured on a fixed 1h−1Mpc scale.

TABLE 2. SCATTER (σln LX |N ) AND REDSHIFT EVOLUTION (γ)

Richness σln LX |N
a γ

λ 0.78±0.02 0.7±0.8
λBCG 0.82±0.02 1.1±0.8

Ntop−hat,model 0.80±0.02 0.5±0.8
Ntop−hat,BCG 0.99±0.02 4.2±0.7

N200 0.95±0.02 6.0±0.8

aFor the top 2000 clusters

4. Ntop−hat,BCG, a top-hat richness using theptop−hat formu-
lation above, centered aroundcBCG, measured on a fixed
1h−1Mpc scale. This is similar to the maxBCGNgals
richness, without the additional cut on ther − i color of
the member galaxies.

5. N200, the original maxBCG richness estimator, mea-
sured in a scaled radiusrgals

200 , with the color filter cen-
tered oncBCG.

Table 2 shows the scatter (in the top 2000 clusters) and evo-
lution parameters for these various richness estimators. There
are two key observations that we can make here. First, when
using the top-hat richness, centering around the model color is
significantly better than centering on the BCG color, in terms
of decreasing both the scatter and evolution of the richness
measure. Second, the smooth Gaussian filter centered on the
BCG color works almost as well as the Gaussian filter cen-
tered on the model color. This is a significant result, because
it implies that not only are the resulting richnesses more ro-
bust to moderate changes in the color filter parameters, but
also the richness measure itself is also robust to photometric
redshift errors. The reason for this robustness is simple: when
using a color top-hat selection, using the correct color model
is of paramount of importance since miscentering of the top-
hat will lead to underestimates of the richness. In the matched
filter framework, what is important is the relative galaxy den-
sity of the cluster and field components, which can remain
high even if the centering of the ridgeline color is slightly
displaced. Thus, matched-filter richness estimates are much
more robust to small changes in the parameters of the color
filter than estimates based on simple color cuts.

As an illustration of this effect, Figure 5 shows the
color distribution of all galaxies brighter than 0.4L∗

within 1h−1Mpc (solid black line) of the galaxy cluster
SDSS J082026.8+073650.1 at a redshiftzspec = 0.22. This
cluster was selected because of the large discrepancy between
N200 andλ. The color of the cluster BCG (solid red line) is
significantly redder than the red sequence. The dotted verti-
cal lines show the±2σint color cut, which does not include
the peak of the red sequence. As a result,N200 is signifi-
cantly underestimated in this system. The blue curve shows
the same galaxy distribution, but weighing each galaxy by its
membership probability as estimated using the matched filter
approach. As we can see, the matched filter effectively selects
galaxies in the red sequence.

We have demonstrated that the redshift evolution observed
in theLX − N200 relation is primarily caused by using a top-hat
filter centered on the color of the BCG. Why such a choice of
color filter results in the strong evolution we observe forN200
is a complicated question, with at least two physical mecha-
nisms contributing to the problem at comparable levels. First,
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FIG. 5.— Color distribution of all the galaxies brighter than 0.4L∗ within
1h−1 Mpc (solid black line) of the galaxy cluster SDSS J082026.8+073650.1
at a redshift ofzspec = 0.22. The distribution is estimated using a Gaussian
Kernel Density Estimator (KDE), with the size of the kernel selected to ad-
equately sample the peak due to ridgeline galaxies. The cluster BCG color
(solid red line) is significantly redder than the red sequence (peak of the black
distribution). The dotted vertical lines show the±2σint color cut, which does
not include the bulk of the red sequence, and thereforeN200 is significantly
underestimated. The blue curve is the KDE estimate of the galaxy distribu-
tion, except every galaxy has been weighted by its membership probability
as estimated using the matched filter approach. We can see thematch filter
richness estimate selects principally ridgeline galaxies.

there is the fact that even for a correctly centered top-hat filter,
a ridgeline galaxy can fall outside the color cuts due to photo-
metric errors. Since photometric errors increase with increas-
ing redshift, a color cut such as that ofN200 will progressively
lose more galaxies as one moves the cluster to higher red-
shift. Second, the E/S0 ridgeline is not flat, but has a slighttilt
(∼ −0.04 mags/mag ing − r vs. i), such that brighter galaxies
tend to be redder (e.g. Visvanathan & Sandage 1977; Renzini
2006). By centering the color filter on the BCG – by def-
inition the brightest and usually reddest cluster member – a
small richness bias is introduced: clusters with brighter BCGs
have a color filter centered redward of the average BCG color.
Moreover, recent work by Hao et al. (in preparation) shows
that with a proper account for photometric errors, the ridge-
line tilt evolves with redshift, such that the ridgeline issteeper
atz = 0.3 than atz = 0.1. Consequently, a BCG centered color
cut becomes increasingly offset from the true mean ridgeline
color as we increase redshift. Both of these systematics ef-
fects occur with similar magnitude, and act in concert to pro-
duce the observed evolution inN200. We emphasize, however,
that our matched filter richness estimator doesnot suffer from
these systematic effects.

Finally, we can now also explain whyN200 exhibits stronger
evolution thanNtop−hat,BCG. Recall that the aperture used to es-
timateN200 is itself based on the richness measureNgals, which
is very similar toNtop−hat,BCG. SinceNtop−hat,BCG systemat-
ically underestimates the richness for high redshift clusters
due to the increasing tilt of the ridgeline, the aperturergals

200 ,
which scales withNtop−hat,BCG, is also underestimated. This
compounds the effect of incorrect centering of the color box
and results in stronger redshift evolution.

7. SUMMARY AND CONCLUSIONS

We have introduced a new matched filter richness estima-
tor λ whose correlation with mass is significantly tighter than
that of N200, the original maxBCG richness estimator. Rela-
tive to other matched filter estimates, our estimator has two

significant differences:

1. The richness is measured on a scale that is optimized
in the sense that it minimizes the scatter inLX at fixed
richness.

2. In addition to a radial and magnitude filters, we include
a color filter. This is of crucial importance for differen-
tiating between member and non-member (projected)
galaxies.

The first these points is important since we have demonstrated
that a poor choice of aperture increases the scatter in mass at
fixed richness, while the latter minimizes the impact of pro-
jection effects in richness estimates. Of the two, however,the
improved treatment of galaxy color is the principal reason for
the marked reduction of the scatter in theLX −richness rela-
tion.

Our procedure for aperture optimization can be easily gen-
eralized to any mass tracer for which one can construct a cali-
brating data set. In our particular case, we minimize the scat-
ter in theLX − λ relation by measuring bothLX andλ within
an apertureRc(λ) = R0(λ/100)α, and varying the model pa-
rametersR0 and λ. Given the small richness range probed
by our sample, we have not been able to isolate unique val-
ues forR0 and α, finding instead a degeneracy region cor-
responding to a fixed mean cluster radius for the clusters in
the sample. Based ona priori assumptions about the radius–
richness scaling, we have fixedα = 1/3, which yields a nor-
malization ofR0 = 1.27± 0.03. We note, however, that the
degeneracy region intersectsα = 0 at R0 ≈ 850 h−1kpc. Al-
though we expect that this fixed scaling will not be ideal at the
rich group/poor cluster scale, it does work as a “first guess”
richness and may be applicable to future cluster finding tech-
niques. At this point, it is unclear whether the cluster radii
selected by our technique reflects a true physical property of
the maxBCG clusters, or whether it is driven primarily by a
compromise between the the increase signal one expects at
larger aperture, and the smaller noise one expects for smaller
apertures. Regardless of the source, it is likely that similar
aperture dependences exist for other mass tracers.

We have also found our new richness estimator has scal-
ing relations whose redshift evolution is much more mild than
those exhibited byN200. This difference arises due to two ef-
fects: first,N200 uses a top-hat filter to select cluster galaxies,
where as our matched filter estimatorλ uses gaussian color
filters. Second,N200 centered its color filter at the color of the
BCG, whereasλ centered its color using an observationally
calibrated color–redshift relation. The fact that the color of
the BCG does not always agree with the observationally cali-
brated redshift-color relation leads to a systematic difference
between the two richness measures. Moreover, we also found
that the sharp edges of the top-hat filter result in a richnesses-
timator that is very sensitive to the details of the color model,
whereas our gaussian filter is much more robust to moderate
changes in the model parameters.

Restricting ourselves to the clean cluster sample, which ex-
cludes cooling flow clusters and clusters with obvious fore-
ground contamination in their X-ray luminosities, we have
found that the scatter in theLX −richness relation of the
2000 richest clusters is isσln LX |λ = 0.69 for λ, compared to
σln LX |N200 = 0.86 for N200. Assuming a slope of≈ 1.6 for
the LX − M relation (Stanek et al. 2006; Rykoff et al. 2008a;
Vikhlinin et al. 2008a), these amount to a logarithmic scatter
in the mass–richness relation of≈ 0.43 and 0.54 respectively.
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While this is a very significant improvement, we expect that
further tightening of the scatter in mass at fixed richness must
be possible. For instance, assuming the intrinsic scatter in
the richness-mass relation is Poisson, the logarithmic scatter
possible for clusters with 20 galaxies or so should be roughly
≈ 0.2.

Fortunately, there are still many options left for us to ex-
plore in our quest to define optical mass proxies that can be
competitive with other mass tracers in terms of the tightness
of the correlation with mass. As we have defined it here, our
richness estimates only makes use of the number of galaxies
in the cluster. One could, for instance, weigh our cluster rich-
ness by other optical mass tracers such as the luminosity of the
brightest cluster galaxy (Reyes et al. 2008), the abundanceof
baryons contained in the intracluster light (e.g. Gonzalezet al.
2007), or other aspects of the cluster galaxy morphology (e.g.
Bautz-Morgan Type, Bautz & Morgan 1970). In addition,
one could weigh each galaxy’s contribution to the richness by
physical observables such as galaxy luminosity. Such a lumi-
nosity weighted richness estimate would be a measure of the
optical luminosity of the cluster as a whole, and might be bet-
ter correlated with mass than richness itself (see also Lin et al.
2003; Miller et al. 2005; Popesso et al. 2005). It is also likely
that further improvements in richness estimates can arise with
more accurate filters, a possibility we intend to explore in fu-
ture work. Finally, we know that even with today’s filters, part
of the scatter we observe must be due to systematics effects
such as failures of the cluster finding algorithm in identifying
the correct center of a cluster, a problem which we have not
addressed in this work. For the time being, the fact that naive
theoretical expectations result in a scatter much lower than
previously observed, and the fact that on our first attempt at
defining a better richness estimator resulted in a highly signif-

icant (≈ 11σ) improvement overN200, suggest that the future
is rife with opportunities for this kind of work.

ER would like to thank David Weinberg and Christopher
Kochanek for interesting discussions and their careful reading
of the manuscript. ESR would like to thank the TABASGO
foundation. RHW was supported in part by the U.S. Depart-
ment of Energy under contract number DE-AC02-76SF00515
and by a Terman Fellowship at Stanford University. TM
and JH gratefully acknowledge support from NSF grant AST
0807304 and DoE Grant DE-FG02-95ER40899. This project
was made possible by workshop support from the Michigan
Center for Theoretical Physics. AE thanks NSF grant AST-
0708150.

Funding for the creation and distribution of the SDSS
Archive has been provided by the Alfred P. Sloan Foun-
dation, the Participating Institutions, the National Aeronau-
tics and Space Administration, the National Science Founda-
tion, the U.S. Department of Energy, the Japanese Monbuka-
gakusho, and the Max Planck Society. The SDSS Web site is
http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Con-
sortium (ARC) for the Participating Institutions. The Par-
ticipating Institutions are The University of Chicago, Fermi-
lab, the Institute for Advanced Study, the Japan Participation
Group, The Johns Hopkins University, the Korean Scientist
Group, Los Alamos National Laboratory, the Max-Planck-
Institute for Astronomy (MPIA), the Max-Planck-Institutefor
Astrophysics (MPA), New Mexico State University, Univer-
sity of Pittsburgh, University of Portsmouth, Princeton Uni-
versity, the United States Naval Observatory, and the Univer-
sity of Washington.

REFERENCES

Abell, G. O. 1958, ApJS, 3, 211
Abell, G. O., Corwin, Jr., H. G., & Olowin, R. P. 1989, ApJS, 70, 1
Adelman-McCarthy, J. K. et al. 2008, ApJS, 175, 297
—. 2006, ApJS, 162, 38
Bahcall, N. A. 1981, ApJ, 247, 787
Bartelmann, M. 1996, A&A, 313, 697
Bauer, F. E., Fabian, A. C., Sanders, J. S., Allen, S. W., & Johnstone, R. M.

2005, MNRAS, 359, 1481
Bautz, L. P., & Morgan, W. W. 1970, ApJ, 162, L149+
Becker, M. R. et al. 2007b, ApJ, 669, 905
—. 2007a, ApJ, 669, 905
Böhringer, H., Burwitz, V., Zhang, Y.-Y., Schuecker, P., & Nowak, N. 2005,

ApJ, 633, 148
Böhringer, H. et al. 2004, A&A, 425, 367
Bond, J. R., Cole, S., Efstathiou, G., & Kaiser, N. 1991, ApJ,379, 440
Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601
Bramel, D. A., Nichol, R. C., & Pope, A. C. 2000, ApJ, 533, 601
Chen, Y., Reiprich, T. H., Böhringer, H., Ikebe, Y., & Zhang,Y.-Y. 2007,

A&A, 466, 805
Cuesta, A. J., Prada, F., Klypin, A., & Moles, M. 2008, MNRAS,846
Dai, X., Kochanek, C. S., & Morgan, N. D. 2007, ApJ, 658, 917
Dong, F., Pierpaoli, E., Gunn, J. E., & Wechsler, R. H. 2008, ApJ, 676, 868
Dressler, A. 1984, ARA&A, 22, 185
Eisenstein, D. J. et al. 2001, AJ, 122, 2267
Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku,K., & Schneider,

D. P. 1996, AJ, 111, 1748
Gladders, M. D., & Yee, H. K. C. 2000, AJ, 120, 2148
—. 2005, ApJS, 157, 1
Gladders, M. D., Yee, H. K. C., Majumdar, S., Barrientos, L. F., Hoekstra,

H., Hall, P. B., & Infante, L. 2007, ApJ, 655, 128
Gonzalez, A. H., Zaritsky, D., & Zabludoff, A. I. 2007, ApJ, 666, 147
Goto, T. et al. 2002, AJ, 123, 1807
Gunn, J. E. et al. 2006, AJ, 131, 2332
Haiman, Z., Mohr, J. J., & Holder, G. P. 2001, ApJ, 553, 545

Hansen, S. M., McKay, T. A., Wechsler, R. H., Annis, J., Sheldon, E. S., &
Kimball, A. 2005, ApJ, 633, 122

Hansen, S. M., Sheldon, E. S., Wechsler, R. H., & Koester, B. P. 2007, ArXiv
e-prints, 710, astro-ph/0710.3780

Hockney, R. W., & Eastwood, J. W. 1981, Computer Simulation Using
Particles (Computer Simulation Using Particles, New York:McGraw-Hill,
1981)

Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J., & Gunn, J. E. 2001, AJ, 122,
2129

Holder, G., Haiman, Z., & Mohr, J. J. 2001, ApJ, 560, L111
Hu, W., & Cohn, J. D. 2006, Phys. Rev. D, 73, 067301
Jenkins, A., Frenk, C. S., White, S. D. M., Colberg, J. M., Cole, S., Evrard,

A. E., Couchman, H. M. P., & Yoshida, N. 2001, MNRAS, 321, 372
Johnston, D. E. et al. 2007, ArXiv e-prints, 709, astro-ph/0709.1159
Kaiser, N. 1986, MNRAS, 222, 323
Kelly, B. C. 2007, ApJ, 665, 1489
Kochanek, C. S., White, M., Huchra, J., Macri, L., Jarrett, T. H., Schneider,

S. E., & Mader, J. 2003, ApJ, 585, 161
Koester, B. P. et al. 2007a, ApJ, 660, 239
—. 2007b, ApJ, 660, 221
Kormendy, J., & Djorgovski, S. 1989, ARA&A, 27, 235
Kravtsov, A. V., Vikhlinin, A., & Nagai, D. 2006, ApJ, 650, 128
Lima, M., & Hu, W. 2004, Phys. Rev. D, 70, 043504
—. 2005, Phys. Rev. D, 72, 043006
Lin, Y.-T., & Mohr, J. J. 2004, ApJ, 617, 879
Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2003, ApJ, 591, 749
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APPENDIX

A MAXIMUM LIKELIHOOD DERIVATION OF MATCHED FILTER RICHNESS ESTIMATORS

Here, we derive equation 2 using a maximum likelihood approach, focusing first in the case where the filtersu(x|λ) are richness
independent. The derivation is as follows: we pixelize the observable spacex into infinitesimal pixels of “volume”∆x such that
every pixel contains at most one galaxy. The likelihood thata given galaxy realization occurs is simply

L∝
∏

occupied

(λu + b)∆x
∏

empty

(1− (λu + b)∆x) (A1)

where the first product is over all occupied pixels, while thesecond product is over all empty pixels. We have neglected terms
that do not depend onλ as they will not contribute to the maximum likelihood richness estimator. Setting∂ lnL/∂λ = 0, and
taking the limit∆x → 0 we find that the maximum likelihood richness estimatorλ̂ML is given by the solution to

1 =
∑ u

λu + b
(A2)

where the sum is over all galaxies in the cluster field. This expression is identical to our naive richness estimator from equation
2.

We wish to briefly consider how richness dependent filtersu(x|λ) affect the maximum likelihood richness estimator. To do
this, we go back to equation A1. Taking the derivative of the log-likelihood with respect toλ and setting it to zero we find that
the generalization of equation 2 is given by

1+
∫

dx λ
∂u
∂λ

=
∑ u + λ(∂u/∂λ)

λu + b
. (A3)

We emphasize that the integral overx and the derivative∂/∂λ do not always commute. Indeed, consider the approach taken in
this paper, in whichu is taken to have a finite spatial extent of radiusRc, which is itself linked to richness via equation 3. The fact
thatu is zero forR > Rc(λ) implies that the integration region foru is λ dependent, and thus the integral and derivative signs do
not commute.

To assess the impact of a richness dependent profile, we consider here a simple isothermal filteru(R|λ) = 1/Rc, whereRc(λ) is
given by equation 3.19 For this filter, we have then

λ
∂u
∂λ

= λ
∂u
∂Rc

∂Rc

∂λ
= −αu (A4)

whereα is the slope of the radius-richness relation in equation 3. Our expression for the maximum likelihood richness estimator
becomes

(1− α) =
∑

R<Rc(λ)

(1− α)u
λu + b

. (A5)

We see that the 1− α prefactors cancel on both side of the equation, and thus our final expression for the maximum likelihood
richness estimator forλ is still given by equation 4, even thoughu is explicitly richness dependent. This suggests that our
naive estimator is in general very close to the true maximum likelihood estimator. We defer a detailed study of whether the
more complicated structure of the true maximum likelihood richness estimator for more elaborate cluster profiles can lead to a
significant improvement over the naive richness estimator from equation 4 to future work.

19 The two dimensional density profile is, of course,Σ(R) ∝ 1/R, but the radial probability density isu(R) = 2πRΣ(R) = 1/Rc.


